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Abstract. An itinerant-electron model is proposed for investigating the Curie temperature
shift in indirectly coupled itinerant ferromagnetic metal/nonmagnetic metal/ferromagnetic metal
(FM2)/substrate structures. The Coulomb correlation between the electrons in the ferromagnetic
metal is treated by using the spectral density approach. The magnetic susceptibility is used to
determine the Curie temperature shift due to the interlayer exchange coupling. The relation between
the Curie temperature shift and the interlayer exchange coupling is studied. It shows that the Curie
temperature shift is related to the strength of the interlayer exchange coupling due to FM2 sublayers
other than that of the whole system at high temperature. Good agreements with experiments are
obtained.

1. Introduction

The magnetic properties of metallic magnetic multilayers have given rise to a lot of studies.
Most of these studies focus on the interlayer exchange coupling [1, 2] (IEC), giant magneto-
resistance [3,4] (GMR), and quantum well effect [5–8]. There has been little work on the effect
of IEC on the magnetic properties of ferromagnetic sublayers (FM). However, recently, it was
found that the magnetic properties of FMs were changed due to the IEC—the Curie temperature
of the FM had a shift from its uncoupled value [9, 10]. In these experiments, two FMs were
separated by a nonmagnetic spacer (NM) mediating the IEC. The magnetic properties of these
two FMs are different in the uncoupled cases—e.g., the magnetizations (mF M1 �= mF M2)
and Curie temperatures (TC1 > TC2). From the curve of magnetization as a function of
temperature, two Curie temperatures (T ∗

C1 and T ∗
C2) were observed in FM1/NM/FM2/SUB

(where SUB refers to the substrate sublayers) systems. The magnetization of FM2 goes to
zero at T = T ∗

C2 with T ∗
C2 > TC2. The difference �TC2 = T ∗

C2 − TC2 is defined as the shift of
the Curie temperature of FM2. The magnetic susceptibility as a function of temperature χ(T )

is also measured in the above experiments [9,10]. In the weakly coupled case (large thickness
of the NM), the magnetic susceptibility displays two maxima: one singularity at T ∗

C1 near TC1;
one maximum at T ∗

C2 near TC2. However, in the strongly coupled case only one singularity
in the curve of χ(T ) was measured at T ∗

C1. Now there exists a contradiction in the above
results. If there exist two Curie temperatures, χ(T ) must display two singularities at different
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temperatures. On the other hand, if there exists only one Curie temperature, the magnetization
of FM2 should not go to zero at T = T ∗

C2.
For the directly coupled FM1/FM2 superlattice [11], the temperature dependence of the

thermal expansion coefficient α[001](T ) was measured. The data display either two anomalies
or one anomaly depending on the composition dF M1/dF M2 (dF M1 and dF M2 are the numbers
of layers of FM1 and FM2, respectively). In order to interpret the experimental results
for the directly coupled systems, the localized spin model was treated in the mean-field
approximation [12, 13]. Within Ginzburg–Landau theory, Wang and Mills [12] studied the
onset of long-range order in a directly coupled superlattice. In some cases, χ(T ) has two
maxima, one at T ∗

C1, the other at T ∗
C2. But only one singularity was obtained in χ(T ). The

magnetizations of these two FMs are nonzero in the temperature range between these two
χ(T ) maxima. The structure can exhibit only one true Curie temperature T ∗

C1, and below this
temperature long-range order exists everywhere in the FM1/FM2 superlattice.

We have mentioned that the above theories [12, 13] are based on the localized spin
models and use the mean-field approximation. However, in transition metal multilayers the
magnetically active electrons are itinerant. It is by no means clear to what extent the results
obtained from localized spin models are applicable to transition metal films. Furthermore,
in the theory of IEC [14, 15], only the properties of NM are considered, while the discrete
magnetic properties of FMs are completely neglected.

In this paper, we study the change of magnetic properties of FMs due to the IEC within the
single-band Hubbard model [16]. Since a simple Hartree–Fock (Stoner) theory is known to
overestimate the possibility of ferromagnetic order drastically and even to lead to qualitatively
wrong results [17], a more sophisticated treatment of the Coulomb correlation between
electrons in the FMs is needed. Here we employ the so-called spectral density approach
(SDA) [18,19]. The SDA leads to qualitatively reasonable results for the magnetic properties
of the Hubbard model [18–23]. A detailed study of ferromagnetism within the SDA and a
comparison with the results from different analytical approximation schemes as well as with
numerical exact quantum Monto Carlo (QMC) results has been performed for the Hubbard
model on infinite-dimensional lattices [24]. It has been found that for a reasonable description
of finite-temperature ferromagnetism it is vital to be consistent with the perturbation theory of
Harris and Lange [25] which provides exact results for the strong-coupling limit. Crucial for
ferromagnetic order is the possibility for a spin-dependent shift of the centres of gravity of the
Hubbard bands. This ‘band shift’ is neglected within most analytical approaches but correctly
included within the SDA [24].

We expect this to be the main mechanism for ferromagnetic order also in the case of
finite-dimensional lattices and for three-dimensional thin films in particular. While the SDA
considerably improves upon a simple Hartree–Fock treatment, it still has to be classified as a
mean-field-type approximation scheme. Like any mean-field approach, however, it is therefore
conflicting with the theorem of Mermin and Wagner [26] which excludes finite-temperature
ferromagnetism for the isotropic Hubbard model in multilayers of finite thickness [27]. On the
other hand, for real materials the theorem is quite irrelevant since (small but) finite anisotropic
interactions are always present. The so-called reorientation transition in the Hubbard model
with additional dipole and spin–orbit interaction has been studied by means of the SDA
recently [20]. As long as one is not interested in the direction of the magnetization, however,
it is not necessary to include anisotropic interactions. The global spin-rotation symmetry is
broken by the mean-field (SDA) approximation itself. Of course, this implies that one can
expect qualitatively reasonable results at best, and that a detailed agreement with experimental
results cannot be expected.

The paper is organized as follows. First, the Hamiltonian of our model is proposed, and
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the SDA for the Hubbard film is described in a simple way. In section 3 we show the results
of the numerical evaluation of the theory. Finally, a summary will be given.

2. Theoretical model

The theoretical method used is similar to that described previously [19–23], so we only give a
brief derivation of our theory.

In the film system, each lattice vector is decomposed into two parts:

Riα = Ri + rα (1)

where Ri denotes a lattice vector of the two-dimensional Bravais lattice of the surface layer
with N sites and rα the vector of the centre of the αth layer. Within each layer we assume
translational invariance.

Within the Hubbard model, and considering the difference of the FMs and NM, we choose
the Hamiltonian as follows:

H =
∑

i,j,α,β,σ

(T
αβ

ij − µδ
αβ

ij )c+
iασ cjβσ +

1

2

∑
i,α,σ

U(α)niασ niα−σ (2)

where c+
iασ (ciασ ) stands for the creation (annihilation) operator for an electron with spin σ at the

lattice site Riα , niασ = c+
iασ ciασ is the number operator, and T

αβ

ij denotes the hopping-matrix
element connecting the lattice sites Riα and Rjβ . µ is the chemical potential.

Here the on-site Coulomb interaction U(α) is layer dependent; the dependence is different
for the FMs and NM:

U(α) =




0 α ∈ SUB or NM

U1 α ∈ FM1

U2 α ∈ FM2.

(3)

The basic quantity to be calculated is the retarded single-electron Green function

G
αβ

ijσ (E) = 〈〈ciασ ; c+
jβσ 〉〉E (4)

which includes all relevant information about the system.
The equation of motion for the single-electron Green function reads∑

l,γ

[(E + µ)δ
αγ

il − T
αγ

il − �
αγ

ilσ (E)]Gγβ

ljσ (E) = h̄δ
αβ

ij . (5)

Here we have introduced the electronic self-energy �
αβ

ijσ (E) which incorporates all effects of
electron correlations.

The key point of the SDA is to find a reasonable ansatz for the self-energy in FMs. Guided
by the exactly solvable atomic limit of vanishing hopping (tαβ

ij = 0) and by the findings of
Harris and Lange [25] in the strong-coupling limit, a one-pole ansatz for the self-energy �α

σ (E)

can be motivated [22]:

�α
σ (E) = gα

1σ

E − gα
2σ

E − gα
3σ

(6)

where the spin- and layer-dependent parameters gα
1σ , gα

2σ , and gα
3σ are fixed by exploiting

the equality between two alternative but exact representations for the moments of the layer-
dependent quasi-particle density of states (QDOS). It has been shown [24] that inclusion of the
first four moments of the QDOS (m = 0–3) is vital for a proper description of ferromagnetism
in the Hubbard model, especially for finite temperatures. Further, the first four moments
represent a necessary condition [24] for consistency with the strong-coupling results of Harris
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and Lange. Taking into account the first four moments to fix the three parameters in (6),
one obtains the SDA self-energy [22–24], which depends on the spin-dependent occupation
numbers nασ and the so-called band shift Bασ that consists of higher correlation functions.

The problem is that of how to find a self-consistent set of nασ and Bασ . Ferromagnetism
is indicated by a spin asymmetry in the band occupations nασ leading to nonzero layer
magnetizations mα = nα↑ − nα↓. The mean magnetization of FM1 is defined as

mF M1 =
∑

α∈F M1

mα/dF M1.

The same definitions are used for FM2 and NM. The band occupation in each layer is given
by nα = nα↑ + nα↓.

The internal energy E:

E = 〈H〉
Nd

= 1

Nd

[ ∑
i,α,j,β,σ

(T
αβ

ij − µδ
αβ

ij )〈c+
iασ cjβσ 〉 +

1

2

∑
i,α,σ

U(α)〈niασ niα−σ 〉
]

(7)

is used to define the interlayer exchange coupling. The above expression can be obtained via
spectral theorem from the one-electron Green function:

E = − 1

πdh̄
Im

∑
α,σ

∫ ∞

−∞
dE f−(E)

[(
E − µ − 1

2
�α

σ (E − µ)

)
Gαα

iiσ (E − µ) − h̄

]
. (8)

3. Results and discussion

The systems investigated are: FM1/NM/FM2/SUB (S1), FM1/NM/NM2/SUB (S2), FM1/NM
(S3), and NM/FM2/SUB (S4) (see figure 1). We will refer to the above systems
as S1: dF M1/dNM/dF M2/dSUB , S2: dF M1/dNM/dr

NM2/dSUB , S3: dF M1/dNM , and S4:
dNM/dF M2/dSUB , respectively. In S2, the parameters used for NM2 are the same as those
used for FM2 in S1 except for the Coulomb interaction. An fcc(100) geometry is assumed for
the whole systems. The parameters used in all figures are as follows: U1 = 4.0 and U2 = 6.0
which are taken near the values for Co and Ni [28]. nF M1 = 1.5 and nF M2 = 1.8 can lead
to similar magnitudes of TC to those found for Co and Ni, respectively. nNM = 1.5 and
t = 0.1 eV. Different values of the parameters were also treated in our calculations, yielding
qualitatively the same results.

S2S1

S3 S4

FM1
NM
FM2
SUB

FM1
NM
NM2
SUB

FM1
NM

NM
FM2
SUB

Figure 1. The systems investigated, shown schematically, namely: S1: FM1/NM/FM2/SUB; S2:
FM1/NM/NM2/SUB; S3: FM1/NM; and S4: NM/FM2/SUB. The properties of NM2 in S2 are the
same as those of FM2 in S1 except for the Coulomb interaction—UNM2 = 0.

First, let us discuss the temperature dependence of the mean magnetizations of FM1
and FM2 for S1 and S4. In figure 2(a), we plot the mean magnetizations of FM1 and FM2
as functions of temperature (mF M1(T ) and mF M2(T )) for an uncoupled system (S4) and a
coupled system (S1). mF M2(T ) goes to zero at TC2 in S4 (dashed line). The system displays a
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Figure 2. (a) The mean magnetizations of FM1 and FM2 as functions of temperature for S1: 2/2/4/6
and S4: 2/4/6 and (b) the magnetization profile of FM2 and NM2 at T = 640 K and T = 750 K
for S1: 2/2/8/6 (filled symbols) and S2: 2/2/8r /6 (open symbols). The dotted line in (a) is an
extrapolated behaviour of mF M2 which corresponds to the experimental results of reference [9].

true transition temperature TC2, while in S1, mF M2(T ) does not go to zero until the temperature
reaches T ∗

C1 (solid line). At TC2, mF M2(T ) is large due to the strong IEC between FM1 and
FM2. Above TC2, mF M2(T ) drops gradually, not, however, becoming exactly zero. We note
that the indirectly coupled system can exhibit only one Curie temperature T ∗

C1. Below T ∗
C1,

the long-range order exists everywhere in the whole system. So we cannot define T ∗
C2 from

the curve of mF M2(T ) as can be done in experiments [9, 10]. According to the extrapolation
of mF M2(T ) above TC2, we obtain a dotted line mex

F M2 in figure 2(a) which corresponds rather
well to experimental results [9]. One obtains a temperature T ex

C2 at the zero point of mex
F M2.

But we will see later that this temperature is larger than the temperature obtained from the
maximum of the magnetic susceptibility.

It is interesting to study the long-range order in FM2 at temperatures TC2 � T < T ∗
C1,

because in this temperature range, the thermal fluctuation should have destroyed the long-
range order of FM2. The long-range order can only be induced by the IEC. However, it is
an interesting question whether or not the Coulomb interaction within FM2 will still affect
the magnetization of FM2. In order to answer this question, we calculated the magnetization
profile of S1: 2/2/8/6 and S2: 2/2/8r /6 at TC2 � T < T ∗

C1 (see figure 2(b)). Comparing these
two cases, the magnetizations of FM2 and NM2 are quite different for several layers close to
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the interface. This means that the Coulomb correlation within FM2 still plays an important
role for the magnetic properties of FM2 in this temperature range. As temperature increases,
the effect of Coulomb interaction on the magnetic properties of FM2 becomes weaker (see
figure 2(b)).

In order to investigate the response of the indirectly coupled system, we calculated the
magnetic susceptibility as a function of temperature χ(T ). The magnetic susceptibility can
be obtained by adding a Zeeman term in the Hamiltonian. In figure 3, χ(T ) and 1/χ(T )

are plotted for different numbers of NM layers in S1: 2/dNM /4/6. There are two maxima in
the χ(T ); one is a singularity which corresponds to the real Curie temperature, the other is
located at T ∗

C2 near to TC2. Even in the strongly coupled cases (dNM < 3), χ(T ) still displays
two maxima. However, since the magnitude of the maximum (χmax) at T ∗

C2 is very small,
experimentally it will be confused with the background. But it can be seen clearly in 1/χ(T ).
When the number of NM layers increases, χmax at T ∗

C2 tends to increase with a little oscillation.
Its relation to the IEC will be discussed below. Defining the temperature T ∗

C2 as a quasi-Curie

χ

dNM=0
dNM=1
dNM=2
dNM=3
dNM=4
dNM=5
dNM=6
dNM=7

(a)

(b)

200 300 400 500 600 700 800 900
T (

o
K)

1/
χ

Figure 3. The magnetic susceptibility χ(T ) (a) and its inverse (b) as functions of temperature for
S1: 2/dNM /4/6 (dNM = 0, . . . , 7).
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temperature†, and �TC2 = T ∗
C2 − TC2 as the Curie temperature shift, we can find that �TC2

relates to χmax at T ∗
C2. The larger χmax is, the smaller �TC2 is, and in the case of a large

number of NM layers, �TC2 χ ≈ constant (see figure 4(c)). At high temperature, the Curie
temperature T ∗

C1 of the coupled case (S1) is different from TC1 for the uncoupled case (S3).
Here we would like to point out that we cannot use the bulk Curie temperature T B

C1 instead
of TC1 in discussing the influence of the IEC on the FM1 [12]. This is because the Curie
temperature for films is quite different from that for the bulk case. Further, we must include
the influence of the NM on the FM1.
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Figure 4. The energy difference �E at T = 0 K (a), T = 250 K (b), and the Curie temperature
shift �TC2 as well as χmax (c) as functions of dNM in S1: 2/dNM /4/6.

Now let us turn to the relation between �TC2 and the strength of the IEC. We calculated
the internal energy difference �E = EAF M − EF M between the ferromagnetic configuration
(FMC: where the directions of the magnetizations of FM1 and FM2 are parallel) and anti-
ferromagnetic configuration (AFMC: where the directions of the magnetizations of FM1 and
FM2 are antiparallel) (figures 4(a), 4(b)). Here we would like to point out that the total-energy
difference �ET OT must include the contributions of all sublayers—FM1, FM2, and NM—not
only the NM as in previous theories [14]. The energy differences of FM1 and FM2 (�EF M1 and

† Note that T ∗
C2 is different from that obtained from magnetization as a function of temperature in experiments [9,10].
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�EF M2) are of the same order of magnitude as that of the NM (�ENM ). Furthermore, they can
have different signs of �ENM , which can even induce a coupling for the whole system which
is opposite to that resulting from the NM only. In a full consideration, the energy difference
of SUB (�ESUB) should also be included, but we find that �ESUB is very small compared
with the other differences, so it can be neglected. From figures 4(a) and 4(b), we find that
�ET OT and also �EF M1, �EF M2, and �ENM have oscillatory behaviours with respect to the
thickness of the NM. Further investigations show that the period of this oscillation is almost the
same as that of the induced polarization oscillation in the NM for the uncoupled systems [29].
This period is determined mainly by the properties of the NM, while it is hardly affected by the
properties of the FMs. But the amplitude of the oscillation of �ET OT is mainly determined by
the properties of the FMs. On the other hand, we find the magnetizations of FMs are different
in the FMC and AFMC. The largest difference of the mean magnetization of FM2 can reach
30% in our calculations, but that of FM1 is very small and less than 2%. This means that if we
replace the FMs by a spin-dependent potential, the height of this potential must be different in
the FMC and AFMC. However, the present theories [14] of the IEC always neglect this effect.
From figures 4(a) and 4(b), it can also be seen that the coupling between FM1 and FM2 has
changed signs in some cases (dNM = 2, 5, 7) as temperature increases. This means that there
exists a temperature-induced transition of the IEC. Comparing figure 4(c) with figures 4(a) and
4(b), we can find that �TC2 is related to �EF M2 but not �ET OT at high temperature. Because
at T ∗

C2 the unstable state cannot be obtained from our self-consistent calculation, we cannot
obtain the energy difference very close to T ∗

C2.

4. Summary

Summarizing, within the single-band Hubbard model we have investigated the change of
magnetic properties in indirectly coupled systems (FM1/NM/FM2/SUB). The Coulomb
interaction between electrons in the FMs is treated by using the SDA, which can lead to rather
convincing results concerning the magnetic properties, especially at finite temperatures. The
magnetic susceptibility is used to define the quasi-Curie temperature, and the Curie temperature
shift. The relation between the Curie temperature shift and the strength of IEC is discussed.
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